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CS 188: Artificial Intelligence 

Lecture 4 and 5: Constraint 
Satisfaction Problems (CSPs) 

Pieter Abbeel – UC Berkeley 

Many slides from Dan Klein 

Recap: Search 

§  Search problem: 
§  States (configurations of the world) 
§  Successor function: a function from states to  

lists of (state, action, cost) triples; drawn as a graph 
§  Start state and goal test 

§  Search tree: 
§  Nodes: represent plans for reaching states 
§  Plans have costs (sum of action costs) 

§  Search Algorithm: 
§  Systematically builds a search tree 
§  Chooses an ordering of the fringe (unexplored nodes) 

What is Search For? 
§  Models of the world: single agents, deterministic actions, 

fully observed state, discrete state space 

§  Planning: sequences of actions 
§  The path to the goal is the important thing 
§  Paths have various costs, depths 
§  Heuristics to guide, fringe to keep backups 

§  Identification: assignments to variables 
§  The goal itself is important, not the path 
§  All paths at the same depth (for some formulations) 
§  CSPs are specialized for identification problems 
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Constraint Satisfaction Problems 

§  Standard search problems: 
§  State is a “black box”: arbitrary data structure 
§  Goal test: any function over states 
§  Successor function can be anything 

§  Constraint satisfaction problems (CSPs): 
§  A special subset of search problems 
§  State is defined by variables Xi  with values from a 

domain D (sometimes D depends on i) 
§  Goal test is a set of constraints specifying 

allowable combinations of values for subsets of 
variables 

§  Simple example of a formal representation 
language 

§  Allows useful general-purpose algorithms with 
more power than standard search algorithms 4 

Example CSP: Map-Coloring 
§  Variables: 

§  Domain: 

§  Constraints: adjacent regions must have 
different colors 

§  Solutions are assignments satisfying all 
constraints, e.g.: 
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Example CSP: N-Queens 

§  Formulation 1: 
§  Variables: 
§ Domains: 
§ Constraints 
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Example CSP: N-Queens 

§  Formulation 2: 
§  Variables: 

§ Domains: 

§ Constraints: 

Implicit: 

Explicit: 

-or- 

Constraint Graphs 
§  Binary CSP: each constraint 

relates (at most) two variables 

§  Binary constraint graph: nodes 
are variables, arcs show 
constraints 

§  General-purpose CSP 
algorithms use the graph 
structure to speed up search. 
E.g., Tasmania is an 
independent subproblem! 
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Example CSP: Cryptarithmetic 

§  Variables (circles): 

§  Domains: 

§  Constraints (boxes): 
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Example CSP: Sudoku 

§  Variables: 
§  Each (open) square 

§  Domains: 
§  {1,2,…,9} 

§  Constraints: 

9-way alldiff for each row 

9-way alldiff for each column 

9-way alldiff for each region 

Example CSP: The Waltz Algorithm 

§  The Waltz algorithm is for interpreting line drawings of 
solid polyhedra 

§  An early example of a computation posed as a CSP  

§  Look at all intersections 
§  Adjacent intersections impose constraints on each other 

? 
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Varieties of CSPs 
§  Discrete Variables 

§  Finite domains 
§  Size d means O(dn) complete assignments 
§  E.g., Boolean CSPs, including Boolean satisfiability (NP-complete) 

§  Infinite domains (integers, strings, etc.) 
§  E.g., job scheduling, variables are start/end times for each job 
§  Linear constraints solvable, nonlinear undecidable 

§  Continuous variables 
§  E.g., start-end state of a robot 
§  Linear constraints solvable in polynomial time by LP methods 

(see cs170 for a bit of this theory) 
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Varieties of Constraints 
§  Varieties of Constraints 

§  Unary constraints involve a single variable (equiv. to shrinking domains): 
  

 
§  Binary constraints involve pairs of variables: 

§  Higher-order constraints involve 3 or more variables: 
    e.g., cryptarithmetic column constraints 

§  Preferences (soft constraints): 
§  E.g., red is better than green 
§  Often representable by a cost for each variable assignment 
§  Gives constrained optimization problems 
§  (We’ll ignore these until we get to Bayes’ nets) 
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Real-World CSPs 
§  Assignment problems: e.g., who teaches what class 
§  Timetabling problems: e.g., which class is offered when 

and where? 
§  Hardware configuration 
§  Transportation scheduling 
§  Factory scheduling 
§  Floorplanning 
§  Fault diagnosis 
§  … lots more! 

§  Many real-world problems involve real-valued 
variables… 
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Standard Search Formulation 

§  Standard search formulation of CSPs (incremental) 

§  Let's start with the straightforward, dumb approach, then 
fix it 

§  States are defined by the values assigned so far 
§  Initial state: the empty assignment, {} 
§  Successor function: assign a value to an unassigned variable 
§  Goal test: the current assignment is complete and satisfies all 

constraints 

§  Simplest CSP ever: two bits, constrained to be equal  
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Search Methods 

§  What does BFS do? 

§  What does DFS do? 
§  [demo] 

§  What’s the obvious problem here? 
§  What’s the slightly-less-obvious problem? 
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Backtracking Search 
§  Idea 1: Only consider a single variable at each point 

§  Variable assignments are commutative, so fix ordering 
§  I.e., [WA = red then NT = green] same as [NT = green then WA = red] 
§  Only need to consider assignments to a single variable at each step 
§  How many leaves are there? 

§  Idea 2: Only allow legal assignments at each point 
§  I.e. consider only values which do not conflict previous assignments 
§  Might have to do some computation to figure out whether a value is ok 
§  “Incremental goal test” 

§  Depth-first search for CSPs with these two improvements is called 
backtracking search (useless name, really) 
§  [DEMO] 

§  Backtracking search is the basic uninformed algorithm for CSPs 

§  Can solve n-queens for n ≈ 25 
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Backtracking Search 

§  Backtracking = DFS + var-ordering + fail-on-violation 
§  What are the choice points? 24 
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Improving Backtracking 

§  General-purpose ideas give huge gains in speed 

§  Ordering: 
§  Which variable should be assigned next? 
§  In what order should its values be tried? 

§  Filtering: Can we detect inevitable failure early? 

§  Structure: Can we exploit the problem structure? 
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Minimum Remaining Values 

§  Minimum remaining values (MRV): 
§  Choose the variable with the fewest legal values 

§  Why min rather than max? 
§  Also called “most constrained variable” 
§  Also called “fail-fast” ordering 
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Degree Heuristic 

§  Tie-breaker among MRV variables 
§  Degree heuristic: 

§  Choose the variable participating in the most 
constraints on remaining variables 

§  Why most rather than fewest constraints? 
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Least Constraining Value 
§  Given a choice of variable: 

§  Choose the least constraining 
value 

§  The one that rules out the fewest 
values in the remaining variables 

§  Note that it may take some 
computation to determine this! 

§  Why least rather than most? 

§  Combining these heuristics 
makes 1000 queens feasible 
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Filtering: Forward Checking 
§  Idea: Keep track of remaining legal values for 

unassigned variables (using immediate constraints) 
§  Idea: Terminate when any variable has no legal values 

WA SA 
NT Q 

NSW 
V 
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[demo: forward checking animation] 

Filtering: Forward Checking 
§  Forward checking propagates information from assigned to adjacent 

unassigned variables, but doesn't detect more distant failures: 

§  NT and SA cannot both be blue! 
§  Why didn’t we detect this yet? 
§  Constraint propagation repeatedly enforces constraints (locally) 

WA SA 
NT Q 

NSW 
V 

31 
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Consistency of An Arc 
§  An arc X → Y is consistent iff for every x in the tail there is some y in 

the head which could be assigned without violating a constraint 

§  What happens? 
§  Forward checking = Enforcing consistency of each arc 

pointing to the new assignment 

WA SA 
NT Q 

NSW 
V 
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Delete 
from tail! 

Arc Consistency of a CSP 
§  Simplest form of propagation makes each arc consistent 

§  X → Y is consistent iff for every value x there is some allowed y 

WA SA 
NT Q 

NSW 
V 
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•  If X loses a value, neighbors of X need to be rechecked! 
•  Arc consistency detects failure earlier than forward checking 
•  What’s the downside of arc consistency? 
•  Can be run as a preprocessor or after each assignment  

X X X

Establishing Arc Consistency 

§  Runtime: O(n2d3), can be reduced to O(n2d2) 
§  … but detecting all possible future problems is NP-hard – why? 
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[demo: arc consistency animation] 

Limitations of Arc Consistency 

§  After running arc 
consistency: 
§  Can have one solution 

left 
§  Can have multiple 

solutions left 
§  Can have no solutions 

left (and not know it) 

What went 
wrong here? 36 

K-Consistency 
§  Increasing degrees of consistency 

§  1-Consistency (Node Consistency): 
Each single node’s domain has a value 
which meets that node’s unary 
constraints 

§  2-Consistency (Arc Consistency): For 
each pair of nodes, any consistent 
assignment to one can be extended to 
the other 

§  K-Consistency: For each k nodes, any 
consistent assignment to k-1 can be 
extended to the kth node. 

§  Higher k more expensive to compute 

§  (You need to know the k=2 algorithm) 37 

Strong K-Consistency* 
§  Strong k-consistency: also k-1, k-2, … 1 consistent 
§  Claim: strong n-consistency means we can solve without 

backtracking! 
§  Why? 

§  Choose any assignment to any variable 
§  Choose a new variable 
§  By 2-consistency, there is a choice consistent with the first 
§  Choose a new variable 
§  By 3-consistency, there is a choice consistent with the first 2 
§  … 

§  Lots of middle ground between arc consistency and n-
consistency!  (e.g. path consistency) 

38 
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Problem Structure 
§  Tasmania and mainland are 

independent subproblems 

§  Identifiable as connected 
components of constraint graph 

§  Suppose each subproblem has c 
variables out of n total 
§  Worst-case solution cost is O((n/c)

(dc)), linear in n 
§  E.g., n = 80, d = 2, c =20 
§  280 = 4 billion years at 10 million 

nodes/sec 
§  (4)(220) = 0.4 seconds at 10 million 

nodes/sec 
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Tree-Structured CSPs 

§  Theorem: if the constraint graph has no loops, the CSP can be 
solved in O(n d2) time 
§  Compare to general CSPs, where worst-case time is O(dn) 

§  This property also applies to probabilistic reasoning (later): an 
important example of the relation between syntactic restrictions and 
the complexity of reasoning. 
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Tree-Structured CSPs 
§  Choose a variable as root, order 

 variables from root to leaves such 
 that every node’s parent precedes 
 it in the ordering  

§  For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi) 
§  For i = 1 : n, assign Xi consistently with Parent(Xi) 

§  Runtime: O(n d2)  (why?) 42 

Tree-Structured CSPs 
§  Why does this work? 
§  Claim: After processing the right k nodes, given any 

satisfying assignment to the rest, the right k can be 
assigned (left to right) without backtracking. 

§  Proof: Induction on position 

§  Why doesn’t this algorithm work with loops? 

§  Note: we’ll see this basic idea again with Bayes’ nets 
43 

Nearly Tree-Structured CSPs 

§  Conditioning: instantiate a variable, prune its neighbors' domains 

§  Cutset conditioning: instantiate (in all ways) a set of variables such 
that the remaining constraint graph is a tree 

§  Cutset size c gives runtime O( (dc) (n-c) d2 ), very fast for small c 44 
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Tree Decompositions* 

45 

§  Create a tree-structured graph of overlapping 
subproblems, each is a mega-variable 

§  Solve each subproblem to enforce local constraints 
§  Solve the CSP over subproblem mega-variables 

using our efficient tree-structured CSP algorithm 
M1 M2 M3 M4 

         {(WA=r,SA=g,NT=b),       
          (WA=b,SA=r,NT=g), 
          …} 

         {(NT=r,SA=g,Q=b), 
          (NT=b,SA=g,Q=r), 
          …} 

Agree: (M1,M2) ∈  
        {((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)),  …} 

A
gree on    shared vars 

NT 

SA 

≠ WA 

≠ ≠ 
Q 

SA 

≠ NT 

≠ ≠ 

A
gree on    shared vars 

NSW 

SA 

≠ Q 

≠ ≠ 

A
gree on    shared vars 

Q 

SA 

≠ NSW 

≠ ≠ 

CSPs: our status 
§  CSPs are a special kind of search problem: 

§  States defined by values of a fixed set of variables 
§  Goal test defined by constraints on variable values 

§  Backtracking = depth-first search with 
§  Branching on only one variable per layer in search tree 

§  Incremental constraint checks  (“Fail fast”) 

§  Heuristics at our points of choice to improve running time: 
§  Ordering variables: Minimum Remaining Values and Degree Heuristic 

§  Ordering of values: Least Constraining Value 

§  Filtering: forward checking, arc consistency  à  enable computation of 
these heuristics 

§  Structure: Disconnected and tree-structured CSPs are efficient 

§  Iterative improvement 46 

Iterative Algorithms for CSPs 
§  Local search methods typically work with “complete” 

states, i.e., all variables assigned 

§  To apply to CSPs: 
§  Start with some assignment with unsatisfied constraints 
§  Operators reassign variable values 
§  No fringe!  Live on the edge. 

§  Variable selection: randomly select any conflicted 
variable 

§  Value selection by min-conflicts heuristic: 
§  Choose value that violates the fewest constraints 
§  I.e., hill climb with h(n) = total number of violated constraints 

47 

Example: 4-Queens 

§  States: 4 queens in 4 columns (44 = 256 states) 
§  Operators: move queen in column 
§  Goal test: no attacks, i.e., no two queens on same row, 

same column or same diagonal 
§  Evaluation: c(n) = number of attacks 

49 

Performance of Min-Conflicts 
§  Given random initial state, can solve n-queens in almost constant 

time for arbitrary n with high probability (e.g., n = 10,000,000) 

§  The same appears to be true for any randomly-generated CSP 
except in a narrow range of the ratio 
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Hill Climbing 

§  Simple, general idea: 
§  Start wherever 
§  Always choose the best neighbor 
§  If no neighbors have better scores than 

current, quit 

§  Why can this be a terrible idea? 
§ Complete? 
§ Optimal? 

§  What’s good about it? 
51 
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Hill Climbing Diagram 

§  Random restarts? 
§  Random sideways steps? 52 

Simulated Annealing* 
§  Idea:  Escape local maxima by allowing downhill moves 

§  But make them rarer as time goes on 

53 

Simulated Annealing* 
§  Theoretical guarantee: 

§  Stationary distribution: 

§  If T decreased slowly enough, 
 will converge to optimal state! 

§  Is this an interesting guarantee? 

§  Sounds like magic, but reality is reality: 
§  The more downhill steps you need to escape, the less 

likely you are to ever make them all in a row 
§  People think hard about ridge operators which let you 

jump around the space in better ways 
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Recap CSPs 
§  CSPs are a special kind of search problem: 

§  States defined by values of a fixed set of variables 
§  Goal test defined by constraints on variable values 

§  Backtracking = depth-first search (why?, tree or graph search?) with 
§  Branching on only one variable per layer in search tree 

§  Incremental constraint checks  (“Fail fast”) 

§  Heuristics at our points of choice to improve running time: 
§  Ordering variables: Minimum Remaining Values and Degree Heuristic 

§  Ordering of values: Least Constraining Value 

§  Filtering: forward checking, arc consistency  à computation of heuristics 

§  Structure: Disconnected and tree-structured CSPs are efficient 
§  Non-tree-structured CSP can become tree-structured after some variables have 

been assigned values  

§  Iterative improvement: min-conflicts is usually effective in practice 
55 
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