
1

CS 188: Artificial Intelligence

Lecture 4 and 5: Constraint
Satisfaction Problems (CSPs)

Pieter Abbeel – UC Berkeley

Many slides from Dan Klein

Recap: Search

§  Search problem:
§  States (configurations of the world)
§  Successor function: a function from states to

lists of (state, action, cost) triples; drawn as a graph
§  Start state and goal test

§  Search tree:
§  Nodes: represent plans for reaching states
§  Plans have costs (sum of action costs)

§  Search Algorithm:
§  Systematically builds a search tree
§  Chooses an ordering of the fringe (unexplored nodes)

What is Search For?
§  Models of the world: single agents, deterministic actions,

fully observed state, discrete state space

§  Planning: sequences of actions
§  The path to the goal is the important thing
§  Paths have various costs, depths
§  Heuristics to guide, fringe to keep backups

§  Identification: assignments to variables
§  The goal itself is important, not the path
§  All paths at the same depth (for some formulations)
§  CSPs are specialized for identification problems

3

Constraint Satisfaction Problems

§  Standard search problems:
§  State is a “black box”: arbitrary data structure
§  Goal test: any function over states
§  Successor function can be anything

§  Constraint satisfaction problems (CSPs):
§  A special subset of search problems
§  State is defined by variables Xi with values from a

domain D (sometimes D depends on i)
§  Goal test is a set of constraints specifying

allowable combinations of values for subsets of
variables

§  Simple example of a formal representation
language

§  Allows useful general-purpose algorithms with
more power than standard search algorithms 4

Example CSP: Map-Coloring
§  Variables:

§  Domain:

§  Constraints: adjacent regions must have
different colors

§  Solutions are assignments satisfying all
constraints, e.g.:

5

Example CSP: N-Queens

§  Formulation 1:
§  Variables:
§ Domains:
§ Constraints

6

2

Example CSP: N-Queens

§  Formulation 2:
§  Variables:

§ Domains:

§ Constraints:

Implicit:

Explicit:

-or-

Constraint Graphs
§  Binary CSP: each constraint

relates (at most) two variables

§  Binary constraint graph: nodes
are variables, arcs show
constraints

§  General-purpose CSP
algorithms use the graph
structure to speed up search.
E.g., Tasmania is an
independent subproblem!

10

Example CSP: Cryptarithmetic

§  Variables (circles):

§  Domains:

§  Constraints (boxes):

12

Example CSP: Sudoku

§  Variables:
§  Each (open) square

§  Domains:
§  {1,2,…,9}

§  Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

Example CSP: The Waltz Algorithm

§  The Waltz algorithm is for interpreting line drawings of
solid polyhedra

§  An early example of a computation posed as a CSP

§  Look at all intersections
§  Adjacent intersections impose constraints on each other

?

15

Varieties of CSPs
§  Discrete Variables

§  Finite domains
§  Size d means O(dn) complete assignments
§  E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

§  Infinite domains (integers, strings, etc.)
§  E.g., job scheduling, variables are start/end times for each job
§  Linear constraints solvable, nonlinear undecidable

§  Continuous variables
§  E.g., start-end state of a robot
§  Linear constraints solvable in polynomial time by LP methods

(see cs170 for a bit of this theory)

18

3

Varieties of Constraints
§  Varieties of Constraints

§  Unary constraints involve a single variable (equiv. to shrinking domains):

§  Binary constraints involve pairs of variables:

§  Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints

§  Preferences (soft constraints):
§  E.g., red is better than green
§  Often representable by a cost for each variable assignment
§  Gives constrained optimization problems
§  (We’ll ignore these until we get to Bayes’ nets)

 19

Real-World CSPs
§  Assignment problems: e.g., who teaches what class
§  Timetabling problems: e.g., which class is offered when

and where?
§  Hardware configuration
§  Transportation scheduling
§  Factory scheduling
§  Floorplanning
§  Fault diagnosis
§  … lots more!

§  Many real-world problems involve real-valued
variables…

20

Standard Search Formulation

§  Standard search formulation of CSPs (incremental)

§  Let's start with the straightforward, dumb approach, then
fix it

§  States are defined by the values assigned so far
§  Initial state: the empty assignment, {}
§  Successor function: assign a value to an unassigned variable
§  Goal test: the current assignment is complete and satisfies all

constraints

§  Simplest CSP ever: two bits, constrained to be equal

21

Search Methods

§  What does BFS do?

§  What does DFS do?
§  [demo]

§  What’s the obvious problem here?
§  What’s the slightly-less-obvious problem?

22

Backtracking Search
§  Idea 1: Only consider a single variable at each point

§  Variable assignments are commutative, so fix ordering
§  I.e., [WA = red then NT = green] same as [NT = green then WA = red]
§  Only need to consider assignments to a single variable at each step
§  How many leaves are there?

§  Idea 2: Only allow legal assignments at each point
§  I.e. consider only values which do not conflict previous assignments
§  Might have to do some computation to figure out whether a value is ok
§  “Incremental goal test”

§  Depth-first search for CSPs with these two improvements is called
backtracking search (useless name, really)
§  [DEMO]

§  Backtracking search is the basic uninformed algorithm for CSPs

§  Can solve n-queens for n ≈ 25
23

Backtracking Search

§  Backtracking = DFS + var-ordering + fail-on-violation
§  What are the choice points? 24

4

Improving Backtracking

§  General-purpose ideas give huge gains in speed

§  Ordering:
§  Which variable should be assigned next?
§  In what order should its values be tried?

§  Filtering: Can we detect inevitable failure early?

§  Structure: Can we exploit the problem structure?

25

Minimum Remaining Values

§  Minimum remaining values (MRV):
§  Choose the variable with the fewest legal values

§  Why min rather than max?
§  Also called “most constrained variable”
§  Also called “fail-fast” ordering

27

Degree Heuristic

§  Tie-breaker among MRV variables
§  Degree heuristic:

§  Choose the variable participating in the most
constraints on remaining variables

§  Why most rather than fewest constraints?
28

Least Constraining Value
§  Given a choice of variable:

§  Choose the least constraining
value

§  The one that rules out the fewest
values in the remaining variables

§  Note that it may take some
computation to determine this!

§  Why least rather than most?

§  Combining these heuristics
makes 1000 queens feasible

29

Filtering: Forward Checking
§  Idea: Keep track of remaining legal values for

unassigned variables (using immediate constraints)
§  Idea: Terminate when any variable has no legal values

WA SA
NT Q

NSW
V

30
[demo: forward checking animation]

Filtering: Forward Checking
§  Forward checking propagates information from assigned to adjacent

unassigned variables, but doesn't detect more distant failures:

§  NT and SA cannot both be blue!
§  Why didn’t we detect this yet?
§  Constraint propagation repeatedly enforces constraints (locally)

WA SA
NT Q

NSW
V

31

5

Consistency of An Arc
§  An arc X → Y is consistent iff for every x in the tail there is some y in

the head which could be assigned without violating a constraint

§  What happens?
§  Forward checking = Enforcing consistency of each arc

pointing to the new assignment

WA SA
NT Q

NSW
V

32

Delete
from tail!

Arc Consistency of a CSP
§  Simplest form of propagation makes each arc consistent

§  X → Y is consistent iff for every value x there is some allowed y

WA SA
NT Q

NSW
V

33

•  If X loses a value, neighbors of X need to be rechecked!
•  Arc consistency detects failure earlier than forward checking
•  What’s the downside of arc consistency?
•  Can be run as a preprocessor or after each assignment

X X X

Establishing Arc Consistency

§  Runtime: O(n2d3), can be reduced to O(n2d2)
§  … but detecting all possible future problems is NP-hard – why?

34
[demo: arc consistency animation]

Limitations of Arc Consistency

§  After running arc
consistency:
§  Can have one solution

left
§  Can have multiple

solutions left
§  Can have no solutions

left (and not know it)

What went
wrong here? 36

K-Consistency
§  Increasing degrees of consistency

§  1-Consistency (Node Consistency):
Each single node’s domain has a value
which meets that node’s unary
constraints

§  2-Consistency (Arc Consistency): For
each pair of nodes, any consistent
assignment to one can be extended to
the other

§  K-Consistency: For each k nodes, any
consistent assignment to k-1 can be
extended to the kth node.

§  Higher k more expensive to compute

§  (You need to know the k=2 algorithm) 37

Strong K-Consistency*
§  Strong k-consistency: also k-1, k-2, … 1 consistent
§  Claim: strong n-consistency means we can solve without

backtracking!
§  Why?

§  Choose any assignment to any variable
§  Choose a new variable
§  By 2-consistency, there is a choice consistent with the first
§  Choose a new variable
§  By 3-consistency, there is a choice consistent with the first 2
§  …

§  Lots of middle ground between arc consistency and n-
consistency! (e.g. path consistency)

38

6

39

Problem Structure
§  Tasmania and mainland are

independent subproblems

§  Identifiable as connected
components of constraint graph

§  Suppose each subproblem has c
variables out of n total
§  Worst-case solution cost is O((n/c)

(dc)), linear in n
§  E.g., n = 80, d = 2, c =20
§  280 = 4 billion years at 10 million

nodes/sec
§  (4)(220) = 0.4 seconds at 10 million

nodes/sec
40

Tree-Structured CSPs

§  Theorem: if the constraint graph has no loops, the CSP can be
solved in O(n d2) time
§  Compare to general CSPs, where worst-case time is O(dn)

§  This property also applies to probabilistic reasoning (later): an
important example of the relation between syntactic restrictions and
the complexity of reasoning.

41

Tree-Structured CSPs
§  Choose a variable as root, order

 variables from root to leaves such
 that every node’s parent precedes
 it in the ordering

§  For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
§  For i = 1 : n, assign Xi consistently with Parent(Xi)

§  Runtime: O(n d2) (why?) 42

Tree-Structured CSPs
§  Why does this work?
§  Claim: After processing the right k nodes, given any

satisfying assignment to the rest, the right k can be
assigned (left to right) without backtracking.

§  Proof: Induction on position

§  Why doesn’t this algorithm work with loops?

§  Note: we’ll see this basic idea again with Bayes’ nets
43

Nearly Tree-Structured CSPs

§  Conditioning: instantiate a variable, prune its neighbors' domains

§  Cutset conditioning: instantiate (in all ways) a set of variables such
that the remaining constraint graph is a tree

§  Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c 44

7

Tree Decompositions*

45

§  Create a tree-structured graph of overlapping
subproblems, each is a mega-variable

§  Solve each subproblem to enforce local constraints
§  Solve the CSP over subproblem mega-variables

using our efficient tree-structured CSP algorithm
M1 M2 M3 M4

 {(WA=r,SA=g,NT=b),
 (WA=b,SA=r,NT=g),
 …}

 {(NT=r,SA=g,Q=b),
 (NT=b,SA=g,Q=r),
 …}

Agree: (M1,M2) ∈
 {((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)), …}

A
gree on shared vars

NT

SA

≠ WA

≠ ≠
Q

SA

≠ NT

≠ ≠

A
gree on shared vars

NSW

SA

≠ Q

≠ ≠

A
gree on shared vars

Q

SA

≠ NSW

≠ ≠

CSPs: our status
§  CSPs are a special kind of search problem:

§  States defined by values of a fixed set of variables
§  Goal test defined by constraints on variable values

§  Backtracking = depth-first search with
§  Branching on only one variable per layer in search tree

§  Incremental constraint checks (“Fail fast”)

§  Heuristics at our points of choice to improve running time:
§  Ordering variables: Minimum Remaining Values and Degree Heuristic

§  Ordering of values: Least Constraining Value

§  Filtering: forward checking, arc consistency à enable computation of
these heuristics

§  Structure: Disconnected and tree-structured CSPs are efficient

§  Iterative improvement 46

Iterative Algorithms for CSPs
§  Local search methods typically work with “complete”

states, i.e., all variables assigned

§  To apply to CSPs:
§  Start with some assignment with unsatisfied constraints
§  Operators reassign variable values
§  No fringe! Live on the edge.

§  Variable selection: randomly select any conflicted
variable

§  Value selection by min-conflicts heuristic:
§  Choose value that violates the fewest constraints
§  I.e., hill climb with h(n) = total number of violated constraints

47

Example: 4-Queens

§  States: 4 queens in 4 columns (44 = 256 states)
§  Operators: move queen in column
§  Goal test: no attacks, i.e., no two queens on same row,

same column or same diagonal
§  Evaluation: c(n) = number of attacks

49

Performance of Min-Conflicts
§  Given random initial state, can solve n-queens in almost constant

time for arbitrary n with high probability (e.g., n = 10,000,000)

§  The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

50

Hill Climbing

§  Simple, general idea:
§  Start wherever
§  Always choose the best neighbor
§  If no neighbors have better scores than

current, quit

§  Why can this be a terrible idea?
§ Complete?
§ Optimal?

§  What’s good about it?
51

8

Hill Climbing Diagram

§  Random restarts?
§  Random sideways steps? 52

Simulated Annealing*
§  Idea: Escape local maxima by allowing downhill moves

§  But make them rarer as time goes on

53

Simulated Annealing*
§  Theoretical guarantee:

§  Stationary distribution:

§  If T decreased slowly enough,
 will converge to optimal state!

§  Is this an interesting guarantee?

§  Sounds like magic, but reality is reality:
§  The more downhill steps you need to escape, the less

likely you are to ever make them all in a row
§  People think hard about ridge operators which let you

jump around the space in better ways
54

Recap CSPs
§  CSPs are a special kind of search problem:

§  States defined by values of a fixed set of variables
§  Goal test defined by constraints on variable values

§  Backtracking = depth-first search (why?, tree or graph search?) with
§  Branching on only one variable per layer in search tree

§  Incremental constraint checks (“Fail fast”)

§  Heuristics at our points of choice to improve running time:
§  Ordering variables: Minimum Remaining Values and Degree Heuristic

§  Ordering of values: Least Constraining Value

§  Filtering: forward checking, arc consistency à computation of heuristics

§  Structure: Disconnected and tree-structured CSPs are efficient
§  Non-tree-structured CSP can become tree-structured after some variables have

been assigned values

§  Iterative improvement: min-conflicts is usually effective in practice
55

56

